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ABSTRACT
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the multigrid �xed point theorem for multigrid cycles combiningMGP with backrotations, are presented. The

MGP and the backrotations are central eigenvector separation techniques for multigrid eigenvalue algorithms.

They allow computation on coarse levels of eigenvalues of a given eigenvalue problem, and are e�cient tools

in the computation of eigenvectors.

�This research was made possible in part by funds granted to Shlomo Ta'asan, a fellowship program sponsored

by the Charles H. Revson Foundation. Both authors were supported in part by the National Aeronautics and Space
Administration under NASA Contract No. NAS1-19480 while the authors were in residence at the Institute for

Computer Applications in Science and Engineering, (ICASE), Mail Stop 132C, NASA Langley Research Center,

Hampton, Virginia, 23681, USA.

i



1 Introduction

In [1], [2] we present multigrid (MG) eigenvalue algorithms for linear and nonlinear eigenvalue

problems, whose robustness and e�ciency rely much on the multigrid projection (MGP) and on

the backrotations, introduced in [3], [4], [5]. The applications were for Schr�odinger and electromag-

netism eigenvalue problems. MGP allows computation on coarse levels of the eigenvalues of a �ne

level eigenvalue problem. This is stated by the MGP theorem whose proof is given in a general

algebraic setting, in Section 4. The MGP coupled with backrotations, relaxations, and inter-level

transfers form the MG cycles, which are used in the computation of eigenvectors. A central re-

quirement for MG eigenvalue algorithms is that the MG cycles should have as �xed points the �ne

level solutions. In Section 6 we prove that this requirement is met by the MG cycles presented in

Section 5. The MGP coupled with backrotations also improve the e�ciency and robustness of MG

algorithms. Computational examples which motivate the need of backrotations and illustrate the

e�ciency of the presented techniques are shown in Section 7.

For MG techniques and more on MG eigenvalue algorithms, we refer to [6], [7], [8], [9]. For

algorithms and theory on algebraic eigenvalue problems we refer to [10], [11], [12], [13].

2 Generalized Rayleigh Ritz Projections

Assume that A; U; T are given matrices, A of dimensions n�n, and U and T of dimension n� q.

From now on, if not otherwise speci�ed, a pair (E;�) refers to q � q matrices E and � where E is

invertible and � is diagonal. It is said that a pair (E;�) is a solution for (A;U; T ) if:

AUE = UE�+ TE (1)

The separation problem requires to �nd solutions (E;�) of (1) for given (A;U; T ). In a single

level approach this problem is treated by Rayleigh Ritz type projections, while in a multigrid

approach the problem is treated by multigrid projections.

If T = 0 and (E;�) is a solution for (A;U; T ) then UE are eigenvectors of A associated to the

eigenvalues of �. There may be no solutions for (A;U; T ). For example, if T = 0 or T = U , and

q = 1 there is no solution unless U is an eigenvector.

The pairs (E;�) and (F;�) will be called equivalent if

E�E�1 = F�F�1 (2)
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Lemma 1 If the columns of U are linearly independent then any two solutions for (A;U; T )

are equivalent.

Proof From (1) results

AU � T = UE�E�1 = UF�F�1 (3)

and since the columns of U are independent results (2).

Lemma 2 If the pairs (E;�) and (F;�) are equivalent and (F;�) is a solution for (A;U; T )

then (E;�) is a solution for (A;U; T ).

Proof By (2) the relation (3) is obtained and from here (1)

If the columns of U are not linearly independent then nonequivalent solutions for (A;U; T ) may

exist. For instance let q = 3, T = 0 and consider a matrix A which has the eigenvectors U1; U2

with respective eigenvalues 1 and 2. Let U = (U1; U2; U2). One solution (E;�) has � = diag(1; 2; 2)

with E the identity, and a second solution (F;�) has � = diag(1; 2; 0) with f having the �rst two

columns the corresponding columns of the identity matrix, and the third column (0; 1;�1)T . The

two solutions are not equivalent since the sets of eigenvalues in the two pairs are di�erent, while in

(2) they are obviously the same.

Since the problem of �nding a pair (E;�) which satis�es (1) may not have solutions, it is

reduced to

Y T (AUE � UE�� TE) = 0 (4)

i.e., the projection of the residuals of (1) on the space spanned by the columns of Y , should be

minimal. Solutions (E;�) to (4) can be obtained from the smaller q � q generalized eigenvalue

problem:

(Y T (AU � T )) E = (Y TU) E� (5)

One may choose Y in di�erent ways, e.g., either Y = U , or, in an MG setting, Y may be the

transfer of the solution from another level, or Y may consist of approximations of left eigenvectors

of A. Finding a pair (E;�) which satis�es (5) is referred as Generalized Rayleigh-Ritz Projection

(GRRP).

Remarks The T term makes the di�erence between the usual Rayleigh-Ritz projection, (where

T = 0), [11], [13], and the projection presented here. T is introduced by transfers in MG algorithms,

as shown in Section 5. The T changes the usual linear eigenvalue problem for U , AU = U�, into

a nonlinear problem AU = U� + T . Before GRRP, the U can be multiplied UF by an invertible

matrix F , e.g., to orthonormalize the columns of U . The previous solutions E will become F�1E.
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3 Backrotations

Backrotations [5], [2] are central separation techniques in MG algorithms for eigenvalue problems.

A separation matrix E obtained from a projection may combine arbitrarily or even overlap the

eigenvectors in a degenerate eigenspace, (as was often observed in tests [2]). ( This results in the

observation that if F commutes with � from (1), and if E is a solution of (1) then EF is a solution

also.) Di�culties may occur for close eigenvalues and when the eigenspaces are not well enough

approximated. E may permute or rescale the columns of U . The role of backrotations is to correct

these in MG algorithms. If U is the solution of the problem then E should be the identity. When

U is close to the solution then an E obtained by the projection should be brought close to the

identity. In the next backrotation algorithm, it is desired that the eigenvalues be ordered, (e.g., by

modulus), except in close clusters where ordering of eigenvalues is not important but the vectors

of UE are desired to be close to the vectors of U .

Backrotation

Input (E;�)

1) Sort the eigenvalues of � and

permute the columns of E accordingly

2) Determine the clusters of eigenvalues of �

3) For each diagonal block in E

associated with a nondegenerate cluster do:

bring to the diagonal the dominant elements of the block,

permuting the columns of E

and the diagonal of � correspondingly.

4) Let F be a block diagonal matrix

whose diagonal blocks are the diagonal blocks of E

corresponding to the determined clusters.

Replace each diagonal block which does not correspond

to a degenerate cluster by the corresponding identity matrix

5) Set E = EF�1.

6) Change the signs of columns of E

to get positive elements on diagonal.

7) Normalize the columns of E.

Output (E;�)

Assume that Y = U in the GRRP. Denote by Id the identity matrix. The projection and
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backrotation should provide the solution (Id;�) if the equation AU = U�+ T is satis�ed, (i.e., if

(Id;�) is one of the solutions), U has linearly independent columns, and the eigenvalues in � are

sorted.

This is assured by the following lemma:

Lemma 3 If U has independent columns, the eigenvalues on the diagonal of � are sorted and

AU = U�+ T (6)

then the solution of the projection and backrotation is (Id;�).

Proof Assume that (E;�0) is a solution obtained by the projection, with E nonsingular. Since

U has independent columns and (Id;�) is a solution for (A;U; T ), it follows from Lemma 1 that

E�0E�1 = � (7)

Thus � and �0 have the same eigenvalues. Then the sorting at Step 1) in the backrotation algorithm

will make �0 = �. If all eigenvalues in � are di�erent then the initial E is just a permutation and

the sorting of �0 and permutations of columns of E will bring E to diagonal form. The Steps 5) and

6) will impose E = Id while the other steps will let (E;�) unchanged. It is su�cient to consider

the case when � has on diagonal only degenerate clusters. Then after the permutations at 1), E

results block diagonal with the blocks corresponding to degenerate clusters. In this case F = E�1,

thus by Step 5) E = Id.

4 The Algebraic Multigrid Projection

The solutions (E;�) of (1), obtained by a GRRP on a single level may be obtained by an MG

projection, transferring the problem to another level, (e.g., to a coarser level). The problems on

the initial level (1) and on the new level have the same form, and the same solutions.

Assume that the problem (1) for (A;U; T ):

AUE = UE�+ TE (8)

is transfered into a problem for (A0; U 0; T 0):

A0U 0E = U 0E�+ T 0E (9)

such that:

(A1) There exists a matrix J with U 0 = JU

(A2) U 0 has independent columns

(A3) T 0 is de�ned by

T 0 = A0U 0 + J(T �AU) (10)
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The next result provides the theoretical basis of the MG projection:

Theorem (The Two Level Projection Theorem)

If assumptions (A1) to (A3) hold and (A;U; T ) has solutions, then the sets of solutions for (A;U; T )

and (A0; U 0; T 0) coincide and all solutions are equivalent.

Proof Let (E;�) be a solution for (A;U; T ).Then by assumptions (A1), (A3) and (8) it follows:

A0U 0E � U 0E�� T 0E = J(AUE � UE�� TE) = 0 (11)

Thus (E;�) is a solution for (A0; U 0; T 0) (9). Assume that (F;�) is another solution for (A0; U 0; T 0).

Then by (A2) and Lemma 1 the pairs (F;�) and (E;�) are equivalent. By Lemma 2 it follows

that (F;�) is a solution for (A;U; T ).

Problems (8) and (9) have the same form. To �nd a solution for (8), the two level projection

transfers U and the residual T � AU by J and computes a solution of (9) by a GRRP. This is

described by the algorithm:

Two-Level-Projection

1) Transfer U 0 = JU

2) Transfer T 0 = A0U 0 + J(T �AU)

3) Get (E;�) for (A0; U 0; T 0) by a GRRP

Observe the freedom in choosing A0 and J in the above theorem and algorithm. In particular

the dimension of A0 may be much smaller than the dimension of A. The A0 can also be used in

relaxations in MG cycles to approximate the eigenvectors U .

The Multigrid-Projection (MGP) algorithm is a straightforward generalization of the Two-

Level-Projection, in which a sequence of problems AiUiE = UiE�+ TiE for i = 1; :::; l is de�ned

using transfers satisfying (A1), (A2), (A3). For i = l one has the initial problem, whereas for i = 1

the �nal one to which the GRRP is applied. The Ji denotes a transfer matrix from level i+ 1 to

level i.

MGP

For i = l� 1 to 1 do:

1) Transfer Ui = JiUi+1

2) Transfer Ti = AiUi + Ji(Ti+1 � Ai+1Ui+1)

end

3) Get (E;�) for (A1; U1; T1) by a GRRP
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Corollary (The MGP Theorem)

If in the MGP algorithm, the Ui for i = 1; : : : ; l have the same number of columns and their columns

are independent, and if (Al; Ul; Tl) has solutions, then the sets of solutions of (Al; Ul; Tl) and of

(A1; U1; T1) coincide, and all solutions are equivalent.

The proof goes by induction by the number of levels l using the Two Level Projection Theorem.

Remarks Assume that in the two level projection the matrices A; A0; U have the dimensions

n�n; m�m; n�q, and that n� m � q. The work required to compute a pair (E;�) by a GRRP

on the initial level is of order O(q2nCA) due to the scalar products ( UTAU and UTU), where

nCA is the amount of work required to multiply A with a vector, (the diagonalization process,

of order q3, is considered negligible in comparison with q2n ). The amount of work to obtain

a pair (E;�) by the two level projection is of order O(qnCA + qnCJ + q2mCA0), which may be

regarded in many cases as O(qnCA). This may suggest a reduction of work from order q2n to

qn. One is interested not only in E and � but also in the separated solution UE. To compute

UE alone requires q2n operations, which is the order of work of a �ne level GRRP. Instead of the

expensive direct computation of UE, one may use other levels and the computed � to approximate

the q vectors of UE e�ciently. Moreover, this approach allows one to improve the accuracy of the

eigenspace spanned by the columns of U .

5 Multigrid Combined Cycles and FMG Algorithms

This section presents an MG cycle which consists of a combination of the MGP with the usual MG

cycles. The combined cycles are incorporated in an FMG algorithm. This algorithm is used to

compute both the eigenvalues � and the eigenvectors U . For simplicity assume �rst that there are

only two levels. The notations from the previous section are used. Consider the single level subspace

iteration type algorithm [11], [13], used to obtain the largest eigenvalues � and the corresponding

eigenvectors U of the problem:

AU = U� (12)
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Subspace-Iteration

1) Relax AU = U�

2) Update (U;�) by (E;�) using a GRRP

The steps 1) and 2) may be improved using another level. Assume next T = 0. At step 1)

the relaxation can be replaced by a Two-Level-Solver-Cycle, having the same transfers as in the

MGP. The approximate solutions U are corrected with U 0 by step 5), where I is a given matrix,

e.g., I = JT .

Two-Level-Solver-Cycle

1) Relax AU = U�+ T

2) Transfer U 0 = JU

3) Transfer T 0 = A0U 0 + J(T �AU)

4) Relax A0U 0 = U 0�+ T 0

5) Correct: U = U + I(U 0 � JU)

6) Relax AU = U�+ T

Step 2) in the Subspace-Iteration algorithm can be replaced by a Two-Level-Projection. The

Two-Level-Solver-Cycle can be combined with the Two-Level-Projection in a Two-Level-Combined-

Cycle:

Two-Level-Combined-Cycle

1) Relax AU = U�+ T

2) Transfer U 0 = JU ,

3) Transfer T 0 = A0U 0 + J(T �AU)

4) Get (E;�0) for (A0; U 0; T 0) by a GRRP

5) Backrotate (E;�0)

6) Separate U 0 = U 0E, T 0 = TE, � = �0

7) Relax A0U 0 = U 0�+ T 0

8) Correct U = U + I(U 0� JU)

9) Relax AU = U�+ T

Denote by Ii a transfer matrix from level i� 1 to level i. The Two-Level-Combined-Cycle can

be directly extended to an MG Cycle:
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MG-Combined-Cycle (l)

For i = l to 2 do:

1) Relax AiUi = Ui�+ Ti

2) Transfer Ui�1 = Ji�1Ui

3) Transfer Ti�1 = Ai�1Ui�1 + Ji�1(Ti �AiUi)

end

4) Get (E;�0) for (A1; U1; T1) by a GRRP

5) Backrotate (E;�0)

6) Separate U1 = U1E, T1 = T1E, � = �0

7) Relax A1U1 = U1�+ T1

For i = 2 to l do:

8) Correct Ui = Ui + Ii(Ui�1 � Ji�1Ui)

9) Relax AiUi = Ui�+ Ti

end

An FMG algorithm can be de�ned by:

FMG (l)

For i = 1 to l do:

If i = 1 solve the problem by Subspace-Iterations

Else

1) Interpolate Ui = IiUi�1, set Ti = 0

2) Do few MG-Combined-Cycles (i)

Endif

The transfers at steps 3) and 8) in the MG-Combined-Cycle are FAS type transfers [6]. Usually

the FMG (from Full MG, [6]) starts by approximating the solution (U1;�) on a coarse level, i = 1,

then interpolates the solution to successively �ner levels. On each level the solution (Ui;�) is

improved by a few MG cycles. In the general algebraic setting no assumption is done on the levels

being coarse or �ne.
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6 The Fixed Point Theorem for MG Cycles

Usually relaxations do not change the exact solutions of (13):

AU � U� = T (13)

Examples of such relaxations are:

Un+1 = Un +M(T � AUn � Un�) (14)

e.g., Jacobi type or relaxations which have locally the above form, e.g., Gauss-Seidel or Kaczmarz.

Power iterations change the exact solutions if they are not coupled with normalizations. One may

consider relaxations which are more general procedures, e.g., including rescalings, orthogonaliza-

tions, or projections in clusters. The next theorem assumes that: 1) an exact solution U of (13)

has linearly independent columns and the eigenvalues in � are sorted; 2) the transfer J in the

Two-Level-Combined-Cycle maps the solution U into U 0 = JU with linearly independent columns

and with the same number of columns; 3) on both levels, the relaxations don't change the exact

solutions of the respective levels. These are natural assumptions met generally by MG procedures.

For simplicity, as in MG algorithms, in the Two-Level-Combined-Cycle and in the MG-Combined-

Cycle, the solutions of the problem on the level on which the cycles start, i.e., the (U;�) respective

(Ul;�l), will be called �ne level solutions.

Theorem (The Two-Level Fixed Point Theorem)

The Two-Level-Combined-Cycle has as �xed points the exact �ne level solutions.

Proof Suppose that (U;�) is a solution of (13). The relaxation in 1) in the Two-Level-

Combined-Cycle, does not change (U;�). Due to 2) and 3) the transfers of the �ne level solutions

U;� are coarse level solutions, U 0; � of

A0U 0

� U 0� = T 0: (15)

The result of the projection and backrotation is (Id;�), by Lemma 3. Thus step 6) leaves (U 0;�)

unchanged and the same holds for the relaxation 7). Since U 0 = JU initially and U 0 is not changed

by the coarse level steps, the correction 8) leaves U unchanged.

By induction one gets the

Corollary (The MG Fixed Point Theorem)

The MG-Combined-Cycle has as �xed points the exact �ne level solutions.

Generally, a �ne level solution would not be a �xed point of an MG cycle without backrotations,

since the projection may permute the solutions for example. Moreover, a �xed point solution would

not be a stable solution without using backrotations, in the case of clustered eigenvalues, (e.g., due

to relaxations and projections). This is very important for the convergence and the robustness
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of the algorithms. Other MG cycles can be de�ned where the GRRP and the backrotations are

performed on any intermediate level. It is easy to see that the above theorem holds for these cycles

too.

7 Computational Results

The next examples illustrate the e�ciency of the FMG and MG cycles for a Schr�odinger eigenvalue

problem:

(�� V )u = �u (16)

discretized in a box with the edge a = 2�=10. Periodic boundary conditions are assumed. The

problems are in 2-D. In the notation k � FMG � V (�1; �2), the constant k is the number of MG

cycles performed on each level; the �1, (�2) is the number of relaxations performed in the MG

cycle, on each level in the path from �ne to coarse, (coarse to �ne). Such a V cycle will be denoted

V (�1; �2).

The relaxation is Red-Black Gauss-Seidel. The coarsest grid has 4� 4 points. The projection is

performed on level 1, the coarsest grid. On the second level two relaxations are performed, showing

in many tests a cheap and substantial improvement of the V cycles convergence rate. The coarse

level linear systems were solved exactly, using the eigenvalues obtained by the projection, this not

being necessary. The eigenvalues are updated by Rayleigh Quotients after the cubic interpolation

of the solutions to the current �nest level during the FMG. The eigenvectors are normalized to 1

on the current �nest levels, and to the FAS norm on the coarsest level, after projection.

The results in Table 1 show that a second order scheme was obtained by an 1-FMG-V(1,1)

algorithm. The potential was V (x; y) = 2 + 0:1sin(10x + 10y), chosen to produce a splitting of

the �rst cluster of four equal eigenvalues into two degenerate clusters with very close eigenvalues.

Observe the �rst 3 equal digits of the close clustered eigenvalues and the 13 equal digits of the

degenerate eigenvalues, on all levels. On level 5, 8 cycles were performed to show the constant

convergence rate per cycle of 1/10 (see cycles 3 and 8 where the convergence rate is exactly 1/10).

The eigenvectors came out precisely orthogonal, even in the cluster and degenerate eigenspaces,

although the projection was performed only on the coarsest level, (see the scalar products of order

10�13 of the eigenvectors on level 5, in Table 2). In the �rst V cycle on all levels, a convergence rate

of about 1=100 was obtained. The next example, see Table 3, shows that without the backrotations

the eigenvectors fail to converge and the residuals remain stuck at order 1 on all levels except

the coarsest level. A 5-FMG-V(1,1) algorithm was used with no backrotations (but sorting the

eigenvalues, which is a �rst step in backrotations ). Even on level 2, the algorithm gets stuck. The

eigenvectors just keep rotating in the cluster, rendering the coarse level corrections ine�ective. A

few observations: 1) The cluster is well separated from the �rst eigenvalue due to the relaxation and
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coarse level approximations of eigenspaces. Two clusters also may become well separated. 2) The

eigenvalues are accurately approximated (compare with Table 1) showing that the eigenspace is

well approximated. A single MG projection at the end may be su�cient to separate the degenerate

eigenspaces. 3) Orthogonality of eigenvectors is also lost even for the eigenvectors with di�erent

eigenvalues.
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Table 1

1-FMG-V(1,1), 2-D, 5-EV, 5-LEV

cycle vector �rst res last res eigenvalue

L E V E L 1

10 1 0.28E-13 0.89E-13 -0.19999866430865E+01
2 0.84E-13 0.73E-13 -0.83024036274094E+02
3 0.56E-13 0.45E-13 -0.83024036274094E+02
4 0.11E-12 0.10E-12 -0.83089844196732E+02
5 0.64E-13 0.52E-13 -0.83089844196733E+02

L E V E L 2

1 1 0.21E-01 0.67E-03 -0.19999793397309E+01
2 0.30E+02 0.35E+00 -0.97190595196867E+02
3 0.30E+02 0.35E+00 -0.97190595196868E+02
4 0.30E+02 0.35E+00 -0.97281226562455E+02
5 0.30E+02 0.35E+00 -0.97281226562455E+02

L E V E L 3

1 1 0.64E-02 0.42E-03 -0.19999761538938E+01
2 0.11E+02 0.50E-01 -0.10069661549360E+03
3 0.11E+02 0.50E-01 -0.10069661549360E+03
4 0.11E+02 0.50E-01 -0.10079424742753E+03
5 0.11E+02 0.50E-01 -0.10079424742753E+03

L E V E L 4

1 1 0.18E-02 0.13E-03 -0.19999752449715E+01
2 0.30E+01 0.43E-02 -0.10162979203934E+03
3 0.30E+01 0.43E-02 -0.10162979203934E+03
4 0.30E+01 0.43E-02 -0.10172931140738E+03
5 0.30E+01 0.43E-02 -0.10172931140738E+03

L E V E L 5

1 1 0.46E-03 0.36E-04 -0.19999750026388E+01
2 0.76E+00 0.40E-03 -0.10186970728937E+03
3 0.76E+00 0.40E-03 -0.10186970728937E+03
4 0.76E+00 0.40E-03 -0.10196970729590E+03
5 0.76E+00 0.40E-03 -0.10196970729590E+03

3 1 0.35E-05 0.33E-06 -0.19999749801202E+01
2 0.27E-04 0.26E-05 -0.10186970049930E+03
3 0.27E-04 0.26E-05 -0.10186970049930E+03
4 0.27E-04 0.26E-05 -0.10196970049780E+03
5 0.27E-04 0.26E-05 -0.10196970049780E+03

8 1 0.97E-11 0.26E-10 -0.19999749799142E+01
2 0.29E-09 0.31E-10 -0.10186970048459E+03
3 0.29E-09 0.31E-10 -0.10186970048459E+03
4 0.29E-09 0.31E-10 -0.10196970048302E+03
5 0.29E-09 0.31E-10 -0.10196970048302E+03
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Table 2

Scalar products between eigenvectors on level 5

Vector 1 Vector 2 Scalar Product

1 1 0.10E+01

1 2 -0.19E-13

1 3 -0.16E-14

1 4 -0.19E-13

1 5 0.43E-14

2 2 0.10E+01

2 3 0.60E-14

2 4 0.54E-13

2 5 0.12E-12

3 3 0.10E+01

3 4 -0.17E-12

3 5 0.24E-12

4 4 0.10E+01

4 5 0.63E-14

5 5 0.10E+01
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Table 3

5 -FMG-V(1,1), 2-D, 5-EV, 5-LEV,

cycle vector �rst res last res eigenvalue

L E V E L 1

10 1 0.28E-13 0.89E-13 -0.19999866430865E+01
2 0.84E-13 0.73E-13 -0.83024036274094E+02
3 0.56E-13 0.45E-13 -0.83024036274094E+02
4 0.11E-12 0.10E-12 -0.83089844196732E+02
5 0.64E-13 0.52E-13 -0.83089844196733E+02

L E V E L 2

1 1 0.21E-01 0.67E-03 -0.19999793397309E+01
2 0.30E+02 0.17E+01 -0.97190595196867E+02
3 0.30E+02 0.17E+01 -0.97190595196868E+02
4 0.30E+02 0.11E+01 -0.97281226562455E+02
5 0.30E+02 0.11E+01 -0.97281226562455E+02

5 1 0.78E-08 0.16E-09 -0.19999785210023E+01
2 0.16E+01 0.17E+01 -0.96920257120980E+02
3 0.16E+01 0.17E+01 -0.96920257120980E+02
4 0.35E+01 0.59E+01 -0.97015473866025E+02
5 0.35E+01 0.59E+01 -0.97015473866025E+02

L E V E L 3

1 1 0.61E-02 0.36E-03 -0.19999761161604E+01
2 0.11E+02 0.14E+01 -0.10069706261680E+03
3 0.11E+02 0.14E+01 -0.10069706261680E+03
4 0.14E+02 0.25E+01 -0.10080438766161E+03
5 0.14E+02 0.25E+01 -0.10080438766161E+03

L E V E L 4

1 1 0.16E-02 0.94E-04 -0.19999752199391E+01
2 0.34E+01 0.77E+00 -0.10162995680857E+03
3 0.34E+01 0.77E+00 -0.10162995680857E+03
4 0.31E+01 0.25E+01 -0.10172932150242E+03
5 0.31E+01 0.25E+01 -0.10172932150242E+03

L E V E L 5

1 1 0.40E-03 0.23E-04 -0.19999749946246E+01
2 0.13E+01 0.47E+00 -0.10186978359913E+03
3 0.13E+01 0.47E+00 -0.10186978359913E+03
4 0.27E+01 0.41E+00 -0.10197015834270E+03
5 0.27E+01 0.41E+00 -0.10197015834270E+03

5 1 0.21E-07 0.20E-08 -0.19999749799150E+01
2 0.54E+00 0.27E+00 -0.10186974707079E+03
3 0.54E+00 0.27E+00 -0.10186974707079E+03
4 0.35E+01 0.31E+01 -0.10197059714773E+03
5 0.35E+01 0.31E+01 -0.10197059714773E+03
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8 Conclusions

Proofs for the algebraic multigrid projection theorem and for the MG �xed point theorem for cycles

coupling relaxations, projections, backrotations and inter-level transfers, are presented. Important

computational work savings can be obtained, for example, when the transferred problem has sig-

ni�cantly smaller size than the initial problem. The MGP and backrotations can be coupled in

MG cycles, in which the �ne level exact solutions are not changed by the MG cycle. Thus �ne level

solutions are �xed points for the MG cycles. This is important for the e�ciency and robustness of

the MG eigenvalue algorithms. Computational examples which show the failure of the algorithms

in absence of backrotations, and the di�culties to be overcome by the MG cycles are presented.

For the same problems, the e�ciency of the MGP and backrotations is illustrated. These problems

present special computational di�culties such as very close and equal eigenvalues.
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